3.174 \(\int \frac{\cos ^{\frac{7}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx\)

Optimal. Leaf size=128 \[ -\frac{5 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d}+\frac{21 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 a d}-\frac{\sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}+\frac{7 \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{5 a d}-\frac{5 \sin (c+d x) \sqrt{\cos (c+d x)}}{3 a d} \]

[Out]

(21*EllipticE[(c + d*x)/2, 2])/(5*a*d) - (5*EllipticF[(c + d*x)/2, 2])/(3*a*d) - (5*Sqrt[Cos[c + d*x]]*Sin[c +
 d*x])/(3*a*d) + (7*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*a*d) - (Cos[c + d*x]^(5/2)*Sin[c + d*x])/(d*(a + a*Cos
[c + d*x]))

________________________________________________________________________________________

Rubi [A]  time = 0.109611, antiderivative size = 128, normalized size of antiderivative = 1., number of steps used = 6, number of rules used = 5, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.217, Rules used = {2767, 2748, 2635, 2641, 2639} \[ -\frac{5 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d}+\frac{21 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 a d}-\frac{\sin (c+d x) \cos ^{\frac{5}{2}}(c+d x)}{d (a \cos (c+d x)+a)}+\frac{7 \sin (c+d x) \cos ^{\frac{3}{2}}(c+d x)}{5 a d}-\frac{5 \sin (c+d x) \sqrt{\cos (c+d x)}}{3 a d} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^(7/2)/(a + a*Cos[c + d*x]),x]

[Out]

(21*EllipticE[(c + d*x)/2, 2])/(5*a*d) - (5*EllipticF[(c + d*x)/2, 2])/(3*a*d) - (5*Sqrt[Cos[c + d*x]]*Sin[c +
 d*x])/(3*a*d) + (7*Cos[c + d*x]^(3/2)*Sin[c + d*x])/(5*a*d) - (Cos[c + d*x]^(5/2)*Sin[c + d*x])/(d*(a + a*Cos
[c + d*x]))

Rule 2767

Int[((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)/((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> -Simp[((
b*c - a*d)*Cos[e + f*x]*(c + d*Sin[e + f*x])^(n - 1))/(a*f*(a + b*Sin[e + f*x])), x] - Dist[d/(a*b), Int[(c +
d*Sin[e + f*x])^(n - 2)*Simp[b*d*(n - 1) - a*c*n + (b*c*(n - 1) - a*d*n)*Sin[e + f*x], x], x], x] /; FreeQ[{a,
 b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && GtQ[n, 1] && (IntegerQ[2
*n] || EqQ[c, 0])

Rule 2748

Int[((b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) + (f_.)*(x_)]), x_Symbol] :> Dist[c, Int[(b*S
in[e + f*x])^m, x], x] + Dist[d/b, Int[(b*Sin[e + f*x])^(m + 1), x], x] /; FreeQ[{b, c, d, e, f, m}, x]

Rule 2635

Int[((b_.)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> -Simp[(b*Cos[c + d*x]*(b*Sin[c + d*x])^(n - 1))/(d*n),
x] + Dist[(b^2*(n - 1))/n, Int[(b*Sin[c + d*x])^(n - 2), x], x] /; FreeQ[{b, c, d}, x] && GtQ[n, 1] && Integer
Q[2*n]

Rule 2641

Int[1/Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticF[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ
[{c, d}, x]

Rule 2639

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2*EllipticE[(1*(c - Pi/2 + d*x))/2, 2])/d, x] /; FreeQ[{
c, d}, x]

Rubi steps

\begin{align*} \int \frac{\cos ^{\frac{7}{2}}(c+d x)}{a+a \cos (c+d x)} \, dx &=-\frac{\cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}-\frac{\int \cos ^{\frac{3}{2}}(c+d x) \left (\frac{5 a}{2}-\frac{7}{2} a \cos (c+d x)\right ) \, dx}{a^2}\\ &=-\frac{\cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}-\frac{5 \int \cos ^{\frac{3}{2}}(c+d x) \, dx}{2 a}+\frac{7 \int \cos ^{\frac{5}{2}}(c+d x) \, dx}{2 a}\\ &=-\frac{5 \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a d}+\frac{7 \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{5 a d}-\frac{\cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}-\frac{5 \int \frac{1}{\sqrt{\cos (c+d x)}} \, dx}{6 a}+\frac{21 \int \sqrt{\cos (c+d x)} \, dx}{10 a}\\ &=\frac{21 E\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{5 a d}-\frac{5 F\left (\left .\frac{1}{2} (c+d x)\right |2\right )}{3 a d}-\frac{5 \sqrt{\cos (c+d x)} \sin (c+d x)}{3 a d}+\frac{7 \cos ^{\frac{3}{2}}(c+d x) \sin (c+d x)}{5 a d}-\frac{\cos ^{\frac{5}{2}}(c+d x) \sin (c+d x)}{d (a+a \cos (c+d x))}\\ \end{align*}

Mathematica [C]  time = 1.79916, size = 315, normalized size = 2.46 \[ \frac{\cos ^2\left (\frac{1}{2} (c+d x)\right ) \left (-\frac{2 \csc (c) \sqrt{\cos (c+d x)} \left (5 \sin (2 c) \sin (d x)+10 \sin ^2(c) \cos (d x)-6 \cos (c) \left (\sin ^2(c) \cos (2 d x)-8\right )-3 \sin (c) \cos (2 c) \sin (2 d x)+30 \sin \left (\frac{c}{2}\right ) \sin \left (\frac{d x}{2}\right ) \sec \left (\frac{1}{2} (c+d x)\right )+15\right )}{d}+\frac{2 i \sqrt{2} e^{-i (c+d x)} \left (63 \left (-1+e^{2 i c}\right ) \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (-\frac{1}{4},\frac{1}{2},\frac{3}{4},-e^{2 i (c+d x)}\right )+25 \left (-1+e^{2 i c}\right ) e^{i (c+d x)} \sqrt{1+e^{2 i (c+d x)}} \text{Hypergeometric2F1}\left (\frac{1}{4},\frac{1}{2},\frac{5}{4},-e^{2 i (c+d x)}\right )+63 \left (1+e^{2 i (c+d x)}\right )\right )}{\left (-1+e^{2 i c}\right ) d \sqrt{e^{-i (c+d x)} \left (1+e^{2 i (c+d x)}\right )}}\right )}{15 a (\cos (c+d x)+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^(7/2)/(a + a*Cos[c + d*x]),x]

[Out]

(Cos[(c + d*x)/2]^2*(((2*I)*Sqrt[2]*(63*(1 + E^((2*I)*(c + d*x))) + 63*(-1 + E^((2*I)*c))*Sqrt[1 + E^((2*I)*(c
 + d*x))]*Hypergeometric2F1[-1/4, 1/2, 3/4, -E^((2*I)*(c + d*x))] + 25*E^(I*(c + d*x))*(-1 + E^((2*I)*c))*Sqrt
[1 + E^((2*I)*(c + d*x))]*Hypergeometric2F1[1/4, 1/2, 5/4, -E^((2*I)*(c + d*x))]))/(d*E^(I*(c + d*x))*(-1 + E^
((2*I)*c))*Sqrt[(1 + E^((2*I)*(c + d*x)))/E^(I*(c + d*x))]) - (2*Sqrt[Cos[c + d*x]]*Csc[c]*(15 + 10*Cos[d*x]*S
in[c]^2 - 6*Cos[c]*(-8 + Cos[2*d*x]*Sin[c]^2) + 30*Sec[(c + d*x)/2]*Sin[c/2]*Sin[(d*x)/2] + 5*Sin[2*c]*Sin[d*x
] - 3*Cos[2*c]*Sin[c]*Sin[2*d*x]))/d))/(15*a*(1 + Cos[c + d*x]))

________________________________________________________________________________________

Maple [A]  time = 2.244, size = 229, normalized size = 1.8 \begin{align*} -{\frac{1}{15\,da}\sqrt{ \left ( 2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1 \right ) \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}} \left ( -\cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \sqrt{ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}\sqrt{2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1} \left ( 25\,{\it EllipticF} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) +63\,{\it EllipticE} \left ( \cos \left ( 1/2\,dx+c/2 \right ) ,\sqrt{2} \right ) \right ) +48\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{8}-56\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{6}-30\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+23\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{2} \right ) \left ( \cos \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{-2\, \left ( \sin \left ( 1/2\,dx+c/2 \right ) \right ) ^{4}+ \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{2}}}} \left ( \sin \left ({\frac{dx}{2}}+{\frac{c}{2}} \right ) \right ) ^{-1}{\frac{1}{\sqrt{2\, \left ( \cos \left ( 1/2\,dx+c/2 \right ) \right ) ^{2}-1}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^(7/2)/(a+cos(d*x+c)*a),x)

[Out]

-1/15*((2*cos(1/2*d*x+1/2*c)^2-1)*sin(1/2*d*x+1/2*c)^2)^(1/2)*(-cos(1/2*d*x+1/2*c)*(sin(1/2*d*x+1/2*c)^2)^(1/2
)*(2*sin(1/2*d*x+1/2*c)^2-1)^(1/2)*(25*EllipticF(cos(1/2*d*x+1/2*c),2^(1/2))+63*EllipticE(cos(1/2*d*x+1/2*c),2
^(1/2)))+48*sin(1/2*d*x+1/2*c)^8-56*sin(1/2*d*x+1/2*c)^6-30*sin(1/2*d*x+1/2*c)^4+23*sin(1/2*d*x+1/2*c)^2)/a/co
s(1/2*d*x+1/2*c)/(-2*sin(1/2*d*x+1/2*c)^4+sin(1/2*d*x+1/2*c)^2)^(1/2)/sin(1/2*d*x+1/2*c)/(2*cos(1/2*d*x+1/2*c)
^2-1)^(1/2)/d

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{\frac{7}{2}}}{a \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(7/2)/(a+a*cos(d*x+c)),x, algorithm="maxima")

[Out]

integrate(cos(d*x + c)^(7/2)/(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{\cos \left (d x + c\right )^{\frac{7}{2}}}{a \cos \left (d x + c\right ) + a}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(7/2)/(a+a*cos(d*x+c)),x, algorithm="fricas")

[Out]

integral(cos(d*x + c)^(7/2)/(a*cos(d*x + c) + a), x)

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**(7/2)/(a+a*cos(d*x+c)),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\cos \left (d x + c\right )^{\frac{7}{2}}}{a \cos \left (d x + c\right ) + a}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^(7/2)/(a+a*cos(d*x+c)),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^(7/2)/(a*cos(d*x + c) + a), x)